BigDataBench: A Dwarf-based Big Data and AI Benchmark Suite

Wanling Gao http://prof.ict.ac.cn

ICT, Chinese Academy of Sciences

ASPLOS 2018, Williamsburg, VA, USA

Executive summary

BigDataBench Publications

- BigDataBench: a Big Data Benchmark Suite from Internet Services. 20th IEEE International Symposium On High Performance Computer Architecture (HPCA-2014).
- Understanding Big Data Analytics Workloads on Modern Processors. TPDS
 2017. <u>https://arxiv.org/pdf/1504.04974.pdf</u>
- Characterizing data analysis workloads in data centers. 2013 IEEE International Symposium on Workload Characterization (IISWC 2013) (Best paper award)
- BigDataBench: a Dwarf-based Big Data and AI Benchmark Suite. Technical Report. <u>https://arxiv.org/pdf/1802.08254.pdf</u>
- BOPS, Not FLOPS! A New Metric, Measuring Tool, and Roofline Performance Model For Datacenter Computing. Technical Report. <u>https://arxiv.org/pdf/1801.09212.pdf</u>
- Big Data Dwarfs: Towards Fully Understanding Big Data Analytics Workloads. Technical Report. <u>https://arxiv.org/pdf/1802.00699.pdf</u>

BigDataBench

BigDataBench 4.0 Overview

What's New in BigDataBench 4.0

Dwarf-based benchmarking methodology

- Using dwarf combinations to represent big data and AI workloads
- Specification for micro, Component and Application Benchmarks

Seven workload types

• AI, Online service, Offline analytics, Graph analytics, Streaming, Data warehouse, NoSQL

Dwarf-based simulation benchmarks

• 100X runtime speedup, 90+% average accuracy

BigDataBench

Overview

Dwarf-based Benchmarking Methodology

Workload Characterization

Benchmark Challenge

- Complexity and diversity of big data and AI systems
 - Complex software stacks
 - Diversity and frequently changed workloads
 - Rapid evolution of big data and AI systems
- Benchmark fairness
 - Benchmarks must include diversity of data and workloads
 - Data and workloads have great impacts on system and architecture evaluation
- Benchmark consistent across different communities
 - Different benchmark requirements for system, architecture and AI community
 - For the co-design of software and hardware

BigDataBench

What's Dwarf and Why Dwarf

Dwarf Definition

- Captures the common requirements of each class of unit of computation
 - Being reasonably divorced from individual implementations
- A minimum set to represent maximum patterns

We need to understand What's the abstractions of frequently-appearing units of computation among big data and AI workloads (big data and AI dwarf)?

BigDataBench

Relational Model of Structured Data

 E. F. Codd, A relational Model of Data for Large shared data banks. Communication of ACM, vol 13. no.6, 1970.

Set concept : general mathematical meaning

- General representation of data
- Basis of relational algebra (theoretical foundation of database)
- 5 basic operations
 - Select, Project, Product, Union, Difference

TPC-C Benchmark

An On-Line Transaction Processing Benchmark

Units of Computation

- a mid-weight read-write trans- action (i.e., New-Order)
- a light-weight read-write transaction (i.e., Payment)
- a mid-weight read-only transaction (i.e., Order-Status)
- a batch of mid-weight read-write transactions (i.e., Delivery)
- a heavy-weight read-only transaction (i.e., Stock-Level)

How to Abstract Big Data and Al Dwarf

- Big Data & AI Dwarf
 - Units of computation

- Dwarf Abstraction
 - Algorithmic analysis
 - Experimental analysis

中国科学院计算技术研

Big Data and AI Dwarfs

BigDataBench

Why Dwarf-based Benchmarking

- Using the combination to represent a wide variety of big data and AI workloads
 - No need to create a new benchmark or proxy for every possible workload

BigDataBench

Methodology Principle

Separating specification from implementation.

Model relevant domains

State-of-the-art algorithms and technologies

• Implementation keep in pace with the improvement

Data impact

Representative data sets considering typical types and sources

Benchmarking Methodology

Circling around the dwarfs

Specification of micro, component and application benchmark

BigDataBench

Micro Benchmarks

	Micro Benchmark	Involved Dwarf	Application Domain	Workload Type	Data Set	Software Stack	
Offline analytics	Sort	Sort		Offline analytics	Wikipedia entries	Hadoop, Spark, Fl	ink, MPI
	Cran	Sat	1	Offline analytics	Wikipedia entries	Hadoop, Spark, Fl	ink, MPI
	Giep	Set	SE, SN, EC, MP, BI	Streaming	Random Generate	Spark streaming	
	WordCount	Basic statistics	1	Offline analytics	Wikipedia entries	Hadoop, Spark, Fl	ink, MPI
Graph analytics	MD5	Logic		Offline analytics	Wikipedia entries	Hadoop, Spark, N	IPI
	Connected Component	Graph	SN	Graph analytics	Facebook social network	Hadoop, Spark, GraphLab, MPI	Flink,
	RandSample	Sampling	SE, MP, BI	Offline analytics	Wikipedia entries	Hadoop, Spark, N	IPI
	FFT	Transform	MP	Offline analytics	Two-dimensional matrix	Hadoop, Spark, N	IPI
Streaming	Matrix Multiply	Matrix	SE, SN, EC, MP, BI	Offline analytics	Two-dimensional matrix	Hadoop, Spark, N	IPI
-	Read	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDE	
	Write	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDE	l.
	Scan	Set	SE, SN, EC	NoSQL	ProfSearch resumes	HBase, MongoDE	1
	Convolution	Transform	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
NOSQL	Fully Connected	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
	Relu	Logic	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
	Sigmoid	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
	Tanh	Matrix	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
Δ1	MaxPooling	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
AI	AvgPooling	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
	CosineNorm [36]	Basic Statistics	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
	BatchNorm [37]	Basic Statistics	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,
	Dropout [38]	Sampling	SN, EC, MP, BI	AI	Cifar, ImageNet	TensorFlow, pyTorch	Caffe,

BigDataBench

Component Benchmarks

Application

Involved Dwarf

Component Bench-

Online service

Streaming

Offline analytics

Graph analytics

Data warehouse

AI

Domain mark Xapian Server Get. Put. Post SE Online service Wikipedia entries Xapian PageRank Matrix, Sort, Basic statis-SE Graph analytics Google web graph Hadoop, Spark, Flink, GraphLab, MPI tics, Graph Logic, Sort, Basic statis-Index SE Offline analytics Wikipedia entries Hadoop, Spark tics, Set Rolling top words Spark streaming, JStorm Sort. Basic statistics SN Streaming Random generate SE, SN, EC, Hadoop, Spark, Flink, MPI Offline analytics Facebook social network Kmeans Matrix, Sort, Basic statistics MP. BI Streaming Random generate Spark streaming EC Collaborative Offline analytics Amazon movie review Hadoop, Spark Graph, Matrix Filtering EC Streaming MovieLens dataset JStorm Naive Bayes Basic statistics, Sort SE, SN, EC Offline analytics Amazon movie review Hadoop, Spark, Flink, MPI SIFT Matrix, Sampling, Trans-MP Offline analytics ImageNet Hadoop, Spark, MPI form. Sort LDA SE Hadoop, Spark, MPI Matrix, Graph, Sampling Offline analytics Wikipedia entries Order By Set. Sort EC E-commerce transaction Hive, Spark-SQL, Impala Data warehouse EC Set, Basic statistics E-commerce transaction Hive, Spark-SQL, Impala Aggregation Set EC Hive, Spark-SQL, Impala Project, Filter E-commerce transaction Data warehouse Select, Union Set EC E-commerce transaction Hive, Spark-SQL, Impala Alexnet SN, MP, BI AI Cifar, ImageNet TensorFlow, Caffe. pyTorch TensorFlow. Googlenet SN. MP. BI AI Cifar, ImageNet Caffe. Matrix, Transform, py Torch Sampling, Logic, Resnet SN, MP, BI AI Cifar, ImageNet TensorFlow. Caffe. Basic statistics py Torch Inception Resnet V2 SN, MP, BI AL Cifar, ImageNet TensorFlow. Caffe. pyTorch VGG16 SN, MP, BI AI Cifar, ImageNet TensorFlow, Caffe. py Torch DCGAN SN, MP, BI AI LSUN TensorFlow, Caffe. pyTorch WGAN SN, MP, BI AL LSUN TensorFlow. Caffe. pyTorch GAN Matrix, Sampling, Logic. SN, MP, BI AL LSUN TensorFlow. Caffe. pyTorch Basic statistics Seq2Seq SE, EC, BI AI TED Talks TensorFlow. Caffe. pyTorch Word2vec Matrix, Basic statistics, SE, SN, EC AI Wikipedia entries, Sogou Caffe. TensorFlow,

Workload Type

Data Set

Software Stack

BigDataBench

BPOE-9

中国科学院计算技术研究的

One Combination Example

Feature extraction – SIFT Workload

Several dwarfs: *transform* computations(FFT, IFFT), *sampling* computations(downsampling), *matrix* computations(matrix multiplication/subtraction), *sort* computations(sort), *basic statistic* computations(count)

```
BigDataBench
```


Software Stacks

INSTITUTE OF COMPUTING TECHNOLOGY , CHINESE ACADEMY OF SCIENCES

BigDataBench

BigDataBench 4.0 - Dataset

BigDataBench

Dwarf-based Simulation

- Simulation Challenge for Big Data and AI Workloads
 - Complex software stacks limited support of simulators
 - Long running time Several weeks even months
- A light-weigh simulation benchmark on the basis of big data dwarfs (OpenMP & Pthreads)
 - Provide a unified memory management module
 - Shorten the simulation time by <u>100s times</u>
 - Average micro-architectural <u>data accuracy is above 90%</u> on X86 and ARMv8 processors

Dwarf-based Simulation Methodology

DAG-like combinations of dwarfs

- Different weights
- Computation logic

中国科学院计算技术研

BigDataBench

Simulation for Big Data

Data generation tools

Dwarf implementations (OpenMP & Pthreads)

BigDataBench

Simulation for Al

Dwarf implementations (OpenMP & Pthreads)

Dwarf Combination & Tuning

Modelling and Tuning

- Metric: $\overrightarrow{M} = ($ *runtime*, *IPC*, *MIPS*, *L1D hitR*, *L2 hitR*,)
- Parameter: $\overrightarrow{P} = (dataSize, chunkSize, numTasks, weight)$

BigDataBench

Methodology Comparison

- Traditional simulation methodology
 - Kernel benchmark
 - Synthetic trace
 - Synthetic benchmark

Methodology	Typical Benchmark	Input Data	Different Micro-architecture	Multi-core Scalability	System Evaluation	Accuracy
Kernel Benchmark	NPB [17]	Fixed	Recompile	Yes	Yes	Low
Synthetic Trace	SimPoint [19]	Fixed	Regenerate	No	No	High
Synthetic Benchmark	PerfProx [20]	Fixed	Regenerate	No	No	High
Dwarf-Based Proxy Benchmark	Dwarf Benchmark	On-demand	Auto-tuning	Yes	Yes	High

BigDataBench

Dwarf Benchmarks

Four representative big data workloads

Big Data Benchmark	Workload Patterns	Data Set	Involved Dwarfs	Involved Dwarf Components
Hadoop TeraSort	I/O Intensive	Text	Sort computations Sampling computations Graph computations	Quick sort; Merge sort Random sampling; Interval sampling Graph construction; Graph traversal
Hadoop Kmeans	CPU Intensive	Vectors	Matrix computations Sort computations Basic Statistic	Vector euclidean distance; Cosine distance Quick sort; Merge sort Cluster count; Average computation
Hadoop PageRank	Hybrid	Graph	Matrix computations Sort computations Basic Statistic	Matrix construction; Matrix multiplication Quick sort; Min/max calculation Out degree and in degree count of nodes
Hadoop SIFT	CPU Intensive Memory Intensive	Image	Matrix computations Sort computations Sampling computations Transform computations Basic Statistic	Matrix construction; Matrix multiplication Quick sort; Min/max calculation Interval sampling FFT/IFFT Transformation Count Statistics

BigDataBench

Dwarf-based Benchmarking Methodology

Workload Characterization

Top-Down Method

Issue point as the dividing point

From "A Top-Down Method for Performance Analysis and Counters Architecture"

能计复数本

BigDataBench

Frontend bound

Frontend latency bound

经计算格

 Frontend delivers no uops in a cycle, while the Backend was ready to consume them

BigDataBench

Frontend bound

- Frontend bandwidth bound
 - Issued uops less than theoretical value (4 for Sandy Bridge) in a cycle, representing an inefficient use of the Frontend's capability

的计算技术研

BigDataBench

Core bound

Port under-utilization Divider bound

行行 计简片

 Cycles the back end is bound on core non-memory issues (i.e. Out of Order (OOO) resource and execution)

BigDataBench

BigDataBench

中国翻行的计算好。

Bad speculation

cycles wasted because of incorrect predictions

BigDataBench

Configurations

Hardware

- 3-node Hadoop cluster
 - Network: 1 Gb Ethernet network
 - Processor: Intel Xeon E5-2620 v3 (Haswell)

Hardware Conf	igurations			
CPU	J Type	Intel CPU Core		
Intel ®Xeon E5-2620 V3		12 cores@2.40G		
L1 DCache	L1 ICache	L2 Cache	L3 Cache	
12 × 32 KB	$12 \times 32 \text{ KB}$	12 × 256 KB	15MB	
Memory		64GB,DDR4		
Disk		SATA@7200RPM		
Ethernet		1Gb		
Hyper-Threading		Disabled		
Software Confi	gurations			
Operating System		CentOS 7.2		
Linux Kernel		4.1.13		
JDK Version		1.8.0_65		
Hadoop Version		2.7.1		
Hive Version		0.9.0		
HBase Version		1.0.1		
Spark Version		1.5.2		
Tensorflow Version		1.0		

Software

- Software version
 - CentOS 7.2, Kernel 4.1.13
 - JDK version: 1.8.0_65
 - Hadoop version: 2.7.1
- Compared benchmarks
 - SPEC CPU2006
 - HPCC 1.4.0
 - PARSEC 2.0

Benchmark

Seven workload types

的人们的 A 子能计算技术研究的 INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

BigDataBench

Execution Performance

ILP and MLP

- AI: ILP slightly lower than SPECCPU, MLP similar with HPCC
- Big data has lower ILP and MLP than AI for almost all types, except Hive based data warehouse type

Pipeline Efficiency (Level 1)

• AI reflect similar pipeline behaviors with the traditional benchmarks

- retiring (35% v.s. 39.8%), bad speculation (6.3% v.s. 6.1%), frontend bound (both about 9%), and backend bound (49.7% v.s. 45.1%)
- Big data and AI have a small fraction of bad speculation

Retiring Breakdown (Level 2)

- Retiring instructions from microcode sequencer (MS) unit are about 10 times larger than that of traditional benchmarks
 - Incurring notable penalties due to MS switches and further hurts performance

Frontend Bound Breakdown (Level 2&3)

- Big data Benchmark: More frontend bound than the traditional benchmarks
- AI Benchmark: nearly equal frontend bound with the traditional benchmarks
- Frontend bound percentage varies across different workload types
 - NoSQL (35%), data warehouse (25%), the others (15%) on average

Backend Bound Breakdown (Level 2&3)

Memory bound is more severe than core bound

Except online service (nearly equal core and memory bound)

Backend Memory Bound (Level 3)

- Mainly DRAM bound for big data and AI benchmarks
- More stalls due to L1 Bound, L3 Bound and Store Bound than traditional benchmarks

DRAM Bound Breakdown (Level 4)

First bottleneck: DRAM latency bound

DRAM bandwidth: AI more than big data

DRAM Latency Bound (Level 5)

The main bottleneck varies with workload types and software stacks

Iteration Number Impact on AI

Measure the similarity

- PCA and hierarchical clustering using fifty micro-architectural metrics
- Smaller distance means the higher similarity
- A small number of iterations is enough

BigDataBench

Summary

- Big Data Benchmark
 - Different workload types reflect diverse pipeline behaviors
 - Backend bound is the first bottleneck
 - Frontend bound is the second bottleneck
 - Frontend bound percentages vary across different workload types and software stacks
 - Software stacks and algorithms both have great impacts on pipeline behaviors

Summary (Cont')

Al Benchmark

- Higher retiring percentage than big data
- Backend bound is the first bottleneck for AI
- Frontend bound is not always the second bottleneck
- Neural network structures have a great impact on pipeline behaviors, while iteration number has little impact

Conclusion

- BigDataBench 4.0
 - An open source dwarf-based big data and AI benchmark suite
- Website: <u>http://prof.ict.ac.cn</u>
- Technical Reports:
 - https://arxiv.org/pdf/1802.08254.pdf
 - https://arxiv.org/pdf/1801.09212.pdf

BigDataBench Evolution

BigDataBench

BigDataBench Users

- <u>http://prof.ict.ac.cn/BigDataBench/users/</u>
- Industry users
 - Accenture, BROADCOM, SAMSUMG, Huawei, IBM
- About 100 academia groups published papers using BigDataBench or citing BigDataBench papers (800+ citations)
 - VLDB/SIGMOD/ICDE, SC, FAST, ASPLOS, OSDI, ISCA/Micro/ HPCA, ICPP and etc.

他的科学能计算技术研究的 INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

BigDataBench